An integrated, low-noise fan draws a greater volume of cabin air across the temperature sensor, providing a faster response as compared to traditional passive sensors. This can result in a more accurate climate control, leading to better cabin comfort. This sensor can also help improve the efficiency of the temperature control system by reducing the on/off cycles of the heating and cooling system.

Applications

- For in-cabin vehicle temperature measurement for vehicles that have an automated temperature control system

Features

- Existing field proven design
- Fast Response
- Accuracy maximizes driver/passenger comfort
- Ultra-low noise, high air flow optimised system design
- Coreless Type Motor
- Small size & flexible packaging facilitates installation & service
- Low current consumption
- Long-term stability – even in extreme humidity environments
- Alternate RvT curves available
- Available with/without humidity sensor
- Electronics integrated into one assembly with the temperature sensor.
- Different geometries to meet package requirements
Specifications

R @ 25°C
30.0 kΩ ±1.2%

B (0/50)
3887K ±1%

Operating Temperature Range
-40°C to 85°C

Storage Temperature Range
-40°C to 85°C

Response Time
< 10 seconds (25°C to > 85°C in OIL)

Housing Material
PP-(GF+TD)15

NTC Part Number
TC330S39FB

Weight
29.5 grams/piece

Air Flow Volume
Minimum 1.2 m/s (at 23 ±5°C, 13.5 ±0.1V), inlet

Operating Current
70.0mA Maximum (at 14.0 ±0.1V)

Rated Voltage
12.0V

Minimum Starting Voltage
9.0V MAX

Noise
38.0dB MAX (at 12.0±0.1V)

Connector
YAZAKI 7282-8663

Mating Connector
KET MG651439

Resistance and Temperature Accuracy

<table>
<thead>
<tr>
<th>Temp. (°C)</th>
<th>Tolerance (%)</th>
<th>R (KOhms)</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+60</td>
<td>-0.73/+0.71</td>
<td>7.463</td>
<td>±2.6</td>
</tr>
<tr>
<td>+50</td>
<td>-0.59/+0.58</td>
<td>10.810</td>
<td>±2.2</td>
</tr>
<tr>
<td>+35</td>
<td>±0.39</td>
<td>19.590</td>
<td>±1.6</td>
</tr>
<tr>
<td>+25</td>
<td>±0.27</td>
<td>30.000</td>
<td>±1.2</td>
</tr>
<tr>
<td>+15</td>
<td>-0.36/+0.35</td>
<td>47.130</td>
<td>±1.7</td>
</tr>
<tr>
<td>0</td>
<td>-0.47/+0.46</td>
<td>97.710</td>
<td>±2.4</td>
</tr>
<tr>
<td>-15</td>
<td>-0.58/+0.57</td>
<td>216.100</td>
<td>-3.1/+3.2</td>
</tr>
<tr>
<td>-30</td>
<td>-0.69/+0.67</td>
<td>509.600</td>
<td>-4.0/+4.1</td>
</tr>
</tbody>
</table>