FTS
Fuel Temperature Sensor

The fuel temperature sensor is designed to measure the temperature of the fuel and relay this information to the engine control unit, so that it can optimize the air to fuel mix ratio, depending on what the fuel temperature is with respect to the intake air temperature. The sensor enables the run at maximum efficiency based on temperature. The more optimized the combustion process is, the less pollutants that are emitted via the exhaust system.

Applications
- Fuel temperature
- Coolant temperature

Features
- Integral sealed connector
- Gold plated terminals
- Use of crimp & weld terminals allows for various lengths
- PS plastic connector for higher temperatures
- O-ring and shell materials compatible with biodiesel applications and meet new cleanliness requirements
- Increased vibration resistance and durability
- Field proven design
- Alternate RvT curves available
- Different geometries to meet package requirements
- Pigtail versions also available
- Other resistance and beta values available

Amphenol
Advanced Sensors
Specifications

R @ 77°F (25°C)
2,795 ohms ± 2.3%

B (25/85)°C:
4073K

Operating Temperature
-40°C to 135°C

Storage Temperature
-55°C to 135°C

Temperature Accuracy
±0.40° @ 25°C
±1.45° @ 85°C

Response time
≤25 seconds

Housing Material
Machined Stainless Steel

NTC part number
1403-1600-103 S28

Weight
~47 grams

Connector
Ampseal 16 - various keyways available

Mating Connector
Tyco 776427 or equivalent

Resistance vs. Temperature Data

Resistance = 283.5 Ohms at 85.00 °C Rtol. @ 25°C 1.80%

<table>
<thead>
<tr>
<th>Temp. (°C)</th>
<th>Rnominal (ohms)</th>
<th>Res. Tol. ±%</th>
<th>Rmin. (Ohms)</th>
<th>Rmax. (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40.00</td>
<td>100,865.00</td>
<td>4.67</td>
<td>96,155.00</td>
<td>105,575.00</td>
</tr>
<tr>
<td>25.00</td>
<td>2795.00</td>
<td>2.30</td>
<td>2,731.00</td>
<td>2,859.00</td>
</tr>
<tr>
<td>50.00</td>
<td>980.30</td>
<td>2.07</td>
<td>960.00</td>
<td>1,000.00</td>
</tr>
<tr>
<td>85.00</td>
<td>283.50</td>
<td>1.80</td>
<td>278.40</td>
<td>288.60</td>
</tr>
<tr>
<td>125.00</td>
<td>88.32</td>
<td>2.55</td>
<td>86.07</td>
<td>90.57</td>
</tr>
<tr>
<td>150.00</td>
<td>47.46</td>
<td>2.77</td>
<td>46.18</td>
<td>48.74</td>
</tr>
</tbody>
</table>